Ch. 4: Phonatory System

Myoelastic-Aerodynamic Phonation Life Span Changes Vocal Quality & Register

Larynx

CDIS 4313 - OK State - Freeman 2020

Larynx Anatomy & Physiology

- Find your larynx
 - Top bump on throat

- This video: https://youtu.be/Aoa_N1vQS4M (< 2 min)
- Other useful A&P videos: <u>https://jessicafilson.wixsite.com/speechsubsystems</u>

Larynx & Phonation (extra/fun)

- Other useful review videos:
 - Larynx anatomy (<2 mins)
 - <u>https://youtu.be/Aoa_N1vQS4M</u>
 - A&P (<3 mins)
 - https://youtu.be/b89RSYCaUBo
- For fun:
 - singing in MRI: <u>https://youtu.be/J3TwTb-T044</u>

Voicing cycle

- MATP
- Duty cycle

Myoelastic-Aerodynamic Theory of Phonation (MATP)

- Most accepted model of voice production
 - Voice production (phonation) = Interaction of muscle force (myo), tissue elasticity (elastic), and air pressures and flows (aerodynamic)
- Vocal folds (VFs) act as a sound generator
 - VFs vibrate the air coming from lungs to the larynx
 - Creates a sound wave in the vocal tract

• How...

MATP: Steps in Voicing

- 1. Vocal folds close to initiate vibration
 - Laryngeal muscles exert medial compression to hold VFs closed
- Air pressure beneath the VFs (subglottal pressure, P_s) builds up, then forces the vocal folds apart
- 3. Puff of air escapes, vibrates air in vocal tract
 - Laryngeal valves modify the sound wave

MATP: Steps in Voicing

- 4. Vocal folds are pulled back together:
 - Elasticity causes VFs to recoil toward midline
 - Closing VFs form a narrow channel
 - The air passing through the channel speeds up and drops in pressure (Bernoulli Principle)
 - The negative pressure pulls VFs back together

Duty Cycle

- One VF cycle of vibration (duty cycle*) has four phases:
 - 1. opening
 - 2. open
 - 3. closing
 - 4. closed
 - Occurs hundreds of times per second

* Note that this description starts at a different point than the prior description of the MATP cycle

Mucosal Wave

- Vocal folds do not move as one mass
 - The bottom parts move before the tops (Fig 4.16)
 - P_s pushes on the bottom parts first
 - Bottom parts start to recoil before the top parts, making a channel at the bottom before the top, etc.
 - The back opens before the front
 - BUT the front closes before the back
 - <u>https://youtu.be/9kHdhbEnhoA</u>
- Result: VFs move in mucosal wave motion, producing complex periodic sound

– Summary: <u>https://youtu.be/Aoa_N1vQS4M?t=0m48s</u>

Measures of voicing

Phonation Threshold Pressure

- **PTP**: The minimum amount of subglottal pressure (P_s) needed to begin VF vibration
 - PTP for speech: 3-6 cm H₂O
 - PTP for yelling: 50 cm H₂O
 - P_s must be higher than pressure above VFs (supraglottal)
 - Difference in pressures (transglottal pressure) forces air up through glottis

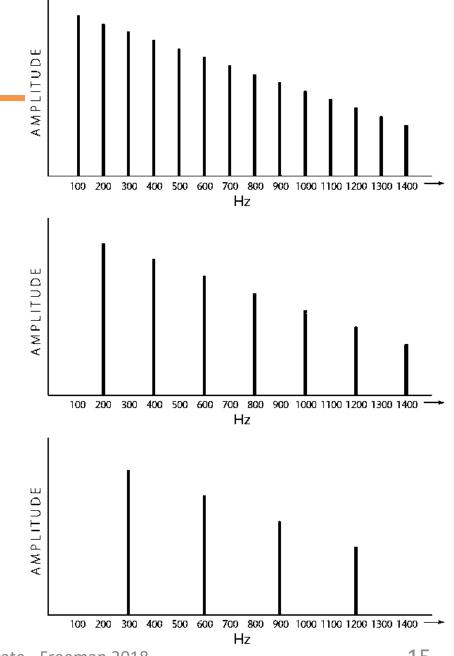
Acoustic Features

- Measureable acoustic traits of vibrating VFs:
 - Fundamental frequency (F_0)
 - Lowest frequency of the complex sound wave

– Spectral slope

- Roll off rate: amplitude decrease between harmonics
- F₀ has the largest amplitude, each harmonic is smaller
- Amplitude near 0 around 4000 or 5000 Hz

Harmonic spacing


- Frequency difference between harmonics (= F₀)
- Number of harmonics <u>~</u> wave complexity
- Periodicity: Jitter & Shimmer

Harmonic Spacing

- Harmonics: Whole multiples of F_0 ("count by" F_0)
- Harmonic spacing: difference btw. harmonics (= F_0)
 - F₀ 100 Hz (man)
 - Harmonics: 200, 300, 400, 500 ... 4800 Hz = 47 harmonics
 - Spacing: 100 Hz
 - F₀ 200 Hz (woman)
 - Harmonics: 400, 600, 800, 1000 ... 4800 Hz = 23 harmonics
 - Spacing: 200 Hz
 - F₀ 300 Hz (child)
 - Harmonics: 600, 900, 1200, 1500 ... 4800 Hz = 15 harmonics
 - Spacing: 300 Hz
- Higher F₀ = wider spacing = fewer harmonics = less complex wave = "thinner/purer" sound

Glottal Spectrum

- Line spectrum of F₀ and harmonics of a voice
 - From a microphone placed right above the glottis, before its waves are modified by the vocal tract

Periodicity

- The human voice is not completely periodic, but has tiny cycle-to-cycle fluctuations (perturbations) in frequency and amplitude
 - Causes: asymmetrical vocal folds, variations in lung pressure, turbulence, articulator movement...
 - Jitter: Frequency perturbation
 - Normal values: 0.2 1 %
 - Higher for children and older adults
 - **Shimmer**: Amplitude perturbation
 - Normal values: < 0.5 dB

Laryngeal changes across the lifespan

Childhood Larynx/Voice

- Infants
 - Tiny vocal folds (~3 mm)
 - $-F_0$ of 400–600 Hz
- Childhood
 - Larynx and VFs increase in size
 - VFs lengthen steadily (~0.4–0.7 mm/yr)
 - $-F_0$ lowers to ~230 Hz by preteen years

Puberty

- Both sexes: lots of growth
- Females
 - VFs lengthen ~34% (~4 mm)
 - Adult length: ~12-18 mm total
 - $-F_0$ lowers to ~220 Hz
- Males
 - VFs lengthen ~63% (~11.5 mm)
 - Adult length: ~17-25 mm total
 - $-F_0$ lowers to ~120 Hz

Aging

- Presbylaryngis: laryngeal aging
 - Muscle atrophy, less control
 - Incomplete glottal closure
 - Menopause: VF mass increases, vibration rate slows
 - Decline starts in
 30s/40s ☺

- Presbyphonia: resulting vocal changes
 - Hoarseness, increased fluctuations
 - Breathiness
 - Pitch changes:
 - Older men: F₀ raises
 - Older women: F₀ lowers

Vocal Quality (VQ)

Vocal Quality

- No exact definition
 - Used in different fields for different meanings
- Related to manner of vocal fold vibration
 - And shape of vocal tract

Normal Voice Quality

- "An accepted definition of normal voice does not exist. ... Attempting to set standards might be likened to defining what constitutes normal appearance." Colton & Casper (1996)
- For our purposes "normal" = non-pathological
 Clear
 - Appropriate pitch, loudness for age, sex, situation
 - No undue effort, strain, pain, fatigue
 - Satisfactory for speaker's social, emotional needs

Normal Voice Quality

- Parameters contributing to normal quality:
 - Average fundamental frequency (F₀, pitch)
 - Within expected range for age, sex, social identity...
 - Frequency range (2-3 octaves)
 - Maximum phonation time (adults: 15-25 sec)
 - Amplitude (loudness) range (20–30 dB)
 - Periodicity of VF vibration (jitter < 1%)</p>
 - Noise (additive or spectral noise)
 - Turbulent air: abnormally high energy in high frequencies → breathy, hoarse, rough

Abnormal Voice Qualities

- **Dysphonia:** voice that sounds deviant in terms of tone, pitch, and/or loudness
 - Sounds "strident, rough, raspy, shrill, harsh, hoarse, tinny, strained"...
 - Pathological, uncontrolled by speaker
- Common, acoustically-measurable terms related to manner of VF vibration:
 - Breathiness
 - Roughness/hoarseness

Breathy & Rough/Hoarse Voice

- VFs don't close completely, air leaks through the glottis during the closed phase
 - Turbulent air makes frication noise in addition to VF frequencies
 - **Breathy**: noise in higher frequencies > 5 kHz
 - Video: <u>https://youtu.be/9cKnUFZjs8k</u>
 - Rough/Hoarse: noise in lower frequencies < 1 kHz
 - Video: <u>https://youtu.be/6d4Z303XGb4</u>
 - Waveforms less periodic
 - Occur w/ aging, voice disorders

Contributors

- Vocal fold closing
 - Hypoadducted (VFs don't close tight/ often enough) → "breathy, weak" voice
 - Hyperadducted (VFs close too much/ often) → "tense, harsh" voice
- Velopharyngeal valving
 - Hypernasal (port doesn't close well) → "nasal"
 - Hyponasal (port closed too much/often) → "stuffed up"

Vocal Registers

Vocal Registers

- VF vibration "settings"
 - Modal: most speech
 - Pulse (aka creaky voice, glottal fry, vocal fry)
 - Falsetto (aka loft)
- Different manners of VF vibration
- Pulse, falsetto: not pathological unless speaker always uses them or can't control when

Modal

- Most speech
- Smooth mucosal wave
- VFs are open/closed about 50/50% of the cycle
- Video: <u>https://youtu.be/FJRv-6T9X4A</u>

Pulse/Creaky/Fry

- VFs are short and thick; false VFs may come into contact with true VFs
- Irregular vibration, can hear individual VF pulses (sounds like very low pitch)
- VFs are closed ~90% of cycle
- Multiphasic closure: Close incompletely during some cycles
- Video: <u>https://youtu.be/BYSZS1LaABQ</u>

Falsetto/Loft

- Tense vocal folds
- Very high pitch
 - Fewer harmonics = less complex wave → "thin" quality
- Video: <u>https://youtu.be/G10EkAW12yk</u>

Linguistic uses of VQ

Linguistic Uses: Phonemes

- Some languages use breathy and/or creaky voice to distinguish phonemes
 - Many languages of India, North America
- Mazatec (a language of Mexico) has modal, breathy, and creaky vowel phonemes
 - Modal "for a while" [t^hǽ]
 - Breathy "horse" [ⁿdée]
 - Creaky "becomes" [næ]

Linguistic Uses: Phonemes

- Gujarati (a language of India) has modal and breathy vowel phonemes
 - Modal: [mɛl] 'dirt'
 - Breathy: [mɛɛl] 'palace'

- Hupa (a language of California) has modal and creaky vowels and nasals
 - Modal: /xoŋ/ 's/he'
 - Creaky: /xoŋ̃/ 'fire'

Linguistic Uses: Phonetic Cues

- Creaky or breathy voice can accompany certain phonemic tones or change their pitch
 - Ex: Mandarin Chinese has four tone contours that appear on vowels to distinguish words
 - One tone dips low in pitch and then goes back up
 - Or it dips low and ends in creaky voicing
- Creaky voice can accompany/replace consonants
 - /?/ in Native American languages, /t/ in English

Linguistic Uses: Social

- Creaky voice is used in English to signal the end of utterances – and social meaning
 - Age, gender (not only young women), social position, sexual orientation, expressiveness...
 - Ex: young women from the Pacific Northwest
 - Breathy
 - Modal
 - Creaky
 - Modal to creaky

Linguistic Uses: Social

- Falsetto is used in African American English for social and stylistic meaning
 - Some: Indignation; resistance to cultural power
- Many other reported uses:
 - Expressiveness: Gay identity
 - Toughness: Chicana gang girls
 - Cuteness: talking to babies/pets
 - Mocking: Reporting others' speech

Activity

CDIS 4313 - OK State - Freeman 2020

Team Activity

- Search for info/videos on:
 - Vocal fry (creaky voicing)
 - Falsetto
 - Dysphonia
 - Breathy voice
 - Vocal fold paresis/paralysis, Transgender voice...
 - Rough/hoarse voice
 - Parkinson's...
 - Singing registers/voices/styles
 - Find more on: Vocal fry, chest, head, falsetto, whistle...
 - Tyley Ross "Singing in the MRI" <u>https://youtu.be/J3TwTb-T044</u>

Post (Discussion board)

- 1. How is the voice quality made?
 - a. What are the VFs doing?

b. Tips for making it

- 2. What do (regular) people think/feel about it?
- Evaluate what you found: good/bad info/advice